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Abstract-An analysis of the finite bending ofan inflated circular cylindrical membrane is presented.
Wrinkling of the membrane is taken into account by using a relaxed energy derived from a strain
energy function of Varga type. First integrals of the equilibrium equations are obtained and used
to reduce the analysis to quadratures. The solutions are then used to study various features of the
deformation and to generate the equilibrium moment--eurvature relations for three values of the
inflation pressure.

I. INTRODUCTION

The problem of flexure of a pressurized cylindrical membrane was formulated and solved
by Stein and Hedgepeth (1961) in the context of a theory for infinitesimal deformations.
Their model accounts for wrinkling of the membrane by incorporating a suitably modified
version of Reissner's tension-field theory (Reissner, 1938). This is an approximate equi­
librium theory for the stress and deformation associated with fine scale wrinkling of a thin
plate with vanishingly small bending stiffness. In this theory it is assumed that the wrinkles
are continuously distributed over a smooth surface and coincide with the trajectories of the
active principal stress. The second principal stress is assumed to vanish identically. A
finite-deformation version of this theory was formulated by Wu and Canfield (1981) for
application to plane-stress problems.

For isotropic elastic membranes with no bending stiffness, Pipkin (1986) showed that
all of the basic hypotheses of tension-field theory follow as consequences of the principle
of minimum potential energy. In particular, states of strain associated with unstable com­
pressive stresses in conventional membrane theory may instead be constructed as limits of
energy-minimizing sequences of deformations involving closely spaced wrinkles. Because
of the absence of bending stiffness, there is no energetic penalty associated with spacing the
wrinkles more and more closely together. The wrinkles are continuously distributed in the
limit and the resulting configuration is, in general, perfectly smooth and free of compressive
stress. Pipkin (1986) used these constructions to derive a relaxed strain energy that auto­
matically accounts for states with continuously distributed wrinkles. Subsequently, Steig­
mann (1990a) used this energy to develop a general tension-field theory for finite defor­
mations of arbitrarily curved membranes composed of isotropic materials.

To predict the details of the distribution, spacing and amplitude of the wrinkles, one
must resort to a theory that accounts for the strain energy due to bending (see e.g. Hilgers
and Pipkin, 1992). However, if detailed information of this kind is not required, then a pure
membrane theory based on a relaxed energy density furnishes a much simpler alternative.
The latter theory is used in the present paper to extend the Stein-Hedgepeth analysis to
finite deformations. Specifically, we solve the problem of a finite flexural deformation
superposed on a radial expansion and axial extension of a sealed and pressurized cylinder.
We assume the deformation to be the same at each cross-section, and thus independent of
the axial coordinate along the length of the cylinder. Thus we obtain a pair of ordinary
differential equations for the coordinates of points on the contour of the deformed cross­
section. The independent variable is the azimuthal angle on the undeformed cylinder.
Various versions of this and related problems are well known in the context of shell theory
(see Reissner and Weinitschke, 1963; Emmerling, 1984; Axelrad, 1985). The book by Libai
and Simmonds (1988) contains a comprehensive discussion of these problems together with
an extensive bibliography.
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We begin in Section 2 with a brief account of kinematics and stress in isotropic elastic
membranes. Locally stable equilibria are defined to be minimizers of a certain potential
energy. In particular, we consider the problem of inflation by a fixed pressure and assume
that the curvature of the tube is prescribed in a sense that we define subsequently (Section
6). The appropriate form of the potential energy is given in Section 2.

In Section 3 we discuss the construction of the relaxed energy and the form that it
takes in wrinkled parts of the membrane. Our analysis is based on the Varga strain energy
function (Varga, 1966). This material model is known to provide fairly good quantitative
agreement with data on rubber at the moderate strain levels present in our solution.
Moreover, its use greatly simplifies much of the algebraic detail.

A kinematical analysis of flexure is presented in Section 4. Following a discussion of
the radial expansion and axial extension of a pressurized cylinder in Section 5, we obtain
the Euler-Lagrange equations that describe superposed flexural deformations in Section 6.
These are derived from an expression for the potential energy per unit initial length of the
cylinder. The contribution from the pressure loading is based on the volume occupied by
a unit length of the reference cylinder in the deformed configuration. Thus the pressure
acting on the closed ends of the membrane is replaced by the pressure acting on the projected
cross-sectional areas.

We derive a pair of first integrals of the Euler-Lagrange equations and use them in
Section 7 to reduce the analysis to quadratures. Kydoniefs (1969) used a similar approach
to analyse axisymmetric deformations of initially cylindrical membranes. The values of the
first integrals must be adjusted to satisfy certain auxiliary conditions. A numerical method
for obtaining these values is discussed in Section 8. We find two equilibrium deformations
for fixed values of the pressure and curvature. An energy comparison is used to support an
argument that one of the solutions is unstable at any curvature.

Finally, in Section 9 we use the solution with smaller energy to compute the resultant
cross-sectional force and moment as functions of curvature at fixed values of the pressure.
The qualitative features of the moment-eurvature response lead us to conjecture that our
solution is unstable at curvatures exceeding some critical value depending on the pressure.
We explain our rationale in Section 9. Indeed, our use of a relaxed energy notwithstanding,
our methods cannot be used to prove stability at any curvature.

Regarding notation, we use subscripts to denote partial derivatives and primes to
denote ordinary derivatives with respect to the variable indicated.

2. EQUILIBRIUM OF ISOTROPIC ELASTIC MEMBRANES UNDER PRESCRIBED PRESSURE

Our analysis of the flexure problem is based on the direct theory of elastic membranes,
in which the membrane is considered to be a two-dimensional continuum endowed with a
strain energy measured per unit area of a reference surface. We regard this framework as
preferable to the conventional approach, based on descent from three-dimensional elasticity
(see Green and Adkins, 1970), because it exposes more clearly the underlying variational
structure of the theory. Detailed discussions of the direct theory can be found in Stoker
(1964), Green et al. (1965), Naghdi (1972), Steigmann (1990a). The equivalence of the direct
and conventional theories has been established by Naghdi and Tang (1977) for isotropic
elastic materials that are either compressible or incompressible in bulk.

To describe a configuration of the membrane, we define a reference surface by the
parametric representation x(~ b ~ 2), (~b ~ 2) ES, where S is a parameter plane. Then a
deformation is a mapping of this surface onto a surface y(~ I, ~2) in three-dimensional space.
The deformation gradient F(~ I, ~2) is the linear transformation defined by:

dy = Fdx.

It can be represented in the form (Pipkin, 1986)

F = AI®L+J.lm® M,

(1)

(2)
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where Aand J.l are the non-negative principal stretches, (I, m) are the orthonormal vectors
of strain spanning the tangent plane of the surface y at the particle with coordinates (e],
e 2), and (L, M) are the corresponding principal vectors on the tangent plane of the reference
surface. The orientations of these surfaces are defined by the unit normals:

o = 1x m and N = Lx M. (3a, b)

As a constitutive hypothesis, we take the membrane to be perfectly flexible, with a strain
energy per unit area of the reference surface that depends in some way on the deformation
gradient F. If the membrane is isotropic and its response is insensitive to superposed rigid
rotations, then the strain energy may be expressed as a symmetric function W*(A, J.l) of the
principal stretches (Naghdi and Tang, 1977). We further assume that the membrane is
homogeneous in the sense that the energy measured per unit area of the reference surface
does not depend explicitly on the parameters eland e2 (Ericksen, 1970).

The force transmitted across an arbitrary material arc dx, with unit normal v and
length ds defined by vds = dx x N, is Tvds, where T is the Piola stress-resultant. For
isotropic membranes, the stress-resultant has the representation (Steigmann, 1990a)

where subscripts Aand J.l are used to denote partial derivatives.
We define stable equilibria to be local minimizers of the potential energy

E[y] = ffW*(A, J.l) dA - L[y] ,
o

(4)

(5)

where dA is the elemental area of the reference surface, n = x(S) is the image of the (e I, e 2)
parameter plane on this surface, and L[·] is a load potential. For a closed, pressurized
membrane with a net internal pressure of prescribed intensity P, the load potential is

L[y] = PV[y], (6)

where V[.] is the volume enclosed by the deformed surface. If o(e], e 2) is the exterior unit
normal to this surface, then:

where

V[y] = ffXdA ; X = ~ Jy. 0,

o

(7a)

(7b)

is the deformed surface area per unit of initial surface area.
Typically, in problems with no prescribed kinematical data, invariance of the total

energy under superposed rigid motions is imposed to obtain a restriction on the prescribed
forces. For example, if edge tractions and distributed forces are prescribed, then invariance
with respect to arbitrary translations requires that the net applied force vanish. For the
case of dead loading, this condition places an a priori restriction on the data that must be
satisfied if the energy is to be bounded below. However, in the present class of problems
involving pressure loading alone, no restrictions arise from such arguments because the
energy is automatically invariant. To see this we consider a superposed rigid deformation

(8)

where Q is a fixed rotation (Q- I = QT, det Q = 1) and c is a fixed vector. The exterior unit
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normal to the surface transforms according to n -+ Qn. Then

and (7a) gives

V[y] -+ V[y] + ~ QTco ff JndA.
n

(9)

(10)

The second term involves the integral ofo over the surface y(~], ~2)' and this vanishes
because the surface is closed. Thus the load potential L [0] is invariant. Because the term
involving strain energy in eqn (5) is already invariant, it follows that the total potential is
invariant, identically, with respect to arbitrary rigid motions.

The equilibrium equations for a pressurized membrane are simply the Euler-Lagrange
equations associated with the energy E[o]. We obtain these directly in Section 6 by
specializing (5-7) to a specific class of flexural deformations.

3. WRINKLING AND THE RELAXED ENERGY DENSITY: VARGA MATERIALS

If an equilibrium deformation y(~ I, ~2) is continuous and continuously differentiable
in S and minimizes the energy E['], then the strain energy, expressed as a function of the
deformation gradient, is locally convex with respect to rank-one perturbations u ® v at the
gradient F(~], ~2) of the minimizer y, for each (~], ~2) ES. This is the well known Legendre­
Hadamard inequality (see Graves, 1939; Truesdell and Noll, 1965). Here u is an arbitrary
three-dimensional vector and v is an arbitrary vector in the tangent plane of the reference
surface n at the point (~Io ~2)' For membranes, the necessity of the Legendre-Hadamard
condition for a general class ofpressure potentials that includes (6, 7) has been demonstrated
by Steigmann (1991).

For isotropic membranes, Pipkin (1986) has derived restrictions on the derivatives of
the strain energy J¥*(..1., fJ) that, taken together, are equivalent to the Legendre-Hadamard
inequality. These are:

(Ila)

and

where

The first two of inequalities (Ila) require that the principal stresses delivered by an
energy minimizer be non-negative at every point in S. These inequalities have no counter­
parts in the Legendre-Hadamard condition for three-dimensional elasticity (Ogden, 1984).
A particular strain energy function, adapted for use in membrane theory, will usually violate
these restrictions in certain parts of the (..1., fJ)-plane. Thus it is possible to formulate
problems in the theory that have no energy minimizer.

To circumvent such difficulties while retaining the analytical simplicity of membrane
theory, Pipkin (1986) introduced the notion ofa relaxed energy density, defined so that the
first two of inequalities (Ila) are automatically satisfied for all ..1., fJ ;:?; O. The construction
of this energy can be understood in terms of the behaviour of a strip under uniaxial tension.
Thus suppose that a unit square of the membrane is stretched into a rectangle ofdimensions
..1. > I and fJ = g(l), whereg(l) is the unique solution of w: (l, 0) = O. For a typical function
J¥*(l, fJ), a compressive force w: < 0 would be required to make the strip narrower than
g(..1.). The resulting deformation would then violate the second inequality in (lla).
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Pipkin has shown that smooth deformations with 0 ~ J1. ~ g(A.) can be constructed as
limits of sequences of finely wrinkled deformations containing closely spaced folds parallel
to the tensile axis. The value of the strain energy at the limit of the sequence is equal to the
original energy evaluated at g(A). Thus the relaxed energy is equal to:

W(A.) = W*(A., g(A.» (12)

in that part of the (A., J1.)-plane where A. > 1 and 0 ~ J1. ~ g(A.). Since it is independent of J1.
in this region, it satisfies the second of (lla) as an equality. From the symmetry of the
function W*(A., J1.), it follows that the relaxed energy is W(J1.) if J1. > 1 and 0 ~ A. ~ g(J1.).

Deformations with stretches 0 ~ (A., J1.) ~ 1 can be constructed as limits of sequences
with folds along both principal axes. The associated relaxed energy is W*(I, 1), which we
take to be zero [pipkin (1986)].

A typical strain energy function furnishes positive principal stresses in the region
defined by A. > g(J1.) and J1. > g(A), and is equal to its relaxation in this region if it satisfies
the remaining inequalities in (I la, b). The inequalities also require that f'(x) ~ 0 and
f(x) ~ 0 for x > 1, wheref = W'(x) is the force-stretch relation in a wrinkled region. If
these conditions are met, then the composite relaxed energy is :

{

W*(A, J1.) ; A. > g(J1.), J1. > g(A.)

W(A., J1.) = ~(A.); A. > 1, 0 ~ J1. ~ g(A.)
W(J1.); J1. > 1, 0 ~ A. ~ g(J1.)

0; 0 ~ (A.,J1.) ~ 1.

(13)

The associated potential energy is given by (5), with W substituted in place of W*.
In the present work we base our analysis on a strain energy function proposed by

Varga for incompressible rubber-like materials (Varga, 1966). In the three-dimensional
theory, the strain energy per unit of initial volume is:

(14)

where the A.i are the principal stretches and G is the shear modulus for infinitesimal strains.
The associated membrane energy may be approximated by setting A.I = A, A.2 = J1. and taking
A.3 to be the stretch through the thickness. Thus:

(15)

where G* = Gh and h is the initial thickness of the membrane. Then the transverse stretch
in uniaxial tension is J1. = g(A.), where:

(16)

For any isotropic elastic material that is incompressible in bulk, the transverse stretch
J1. in simple tension is equal to the through-thickness stretch I/AJ1.. Thus (16) applies to every
such material. For the Varga material, the strain energy in tension is then given by:

W(A.) = W*(A.,g(A» = 2G*(A.+2A.- 1
/
2 -3). (17)

One may easily verify that the relaxed energy defined byeqn (13) and eqns (15)-(17)
satisfies the Legendre-Hadamard inequality for all positive values of A. and J1., provided that
G* > O. In that part of the (A., J1.)-plane where W = W*, both principal stresses are positive
and the membrane is said to be tense. In those parts where W = W, one principal stress is
tensile and the other vanishes identically. The associated stress state is called a tension fie/d.
The corresponding region of the membrane surface may be interpreted as finely wrinkled,
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though the theory furnishes only the average deformation in such a region. The distribution
and spacing of wrinkles in an actual membrane are influenced by its bending stiffness, which
is neglected in the present theory.

The stresses delivered by the relaxed energy vanish identically if both stretches are less
than unity. The membrane may then be regarded as completely slack. Slack equilibrium
states are not possible in the presence of lateral pressure.

4. KINEMATICS OF FLEXURE

Let the reference configuration of the membrane be a right circular cylinder of radius
r, defined parametrically by :

x(O,~) = ri(O)+~k, (18)

where Oe [0, 2n) is the azimuth, ~ is the axial length along a generator 0 = constant, k is a
fixed unit vector aligned with the generators and i(O) is the exterior unit normal to the
cylindrical surface. We assume the membrane to be unstressed in this configuration.

We consider deformations that map points with coordinates ~I = 0, ~2 = ~ onto the
surface

y(O,~) = r(s(~» +x(O)a(s(~» +y(O)b(s(~», (19)

where s(~) measures arc length along a particular base curve r(s) with principal normal
a(s) and binormal b(s). This curve is defined by the requirement that the derivative:

s'(~) = 0(, (20)

where 0( is a positive constant to be specified in what follows. The principal curvature ,,(s)
and principal normal a(s) of the base curve are defined by:

,,(s) = It'(s)l, a(s) = ,,-It'(S),

where

t(s) = r'(s)

is the unit tangent. The binormal is then given by:

b(s) = tx a.

(21a, b)

(2 Ie)

(21d)

In its full generality, eqn (19) can be used to describe a particular class ofdeformations
involving extension, flexure and twist of a tube in which every cross-section ~ = constant
suffers the same distortion. x(O) and y(O) are the rectangular coordinates of a point on the
contour of the deformed cross-section. In the present work we consider the special case in
which b = constant and " = constant. This corresponds to uniform flexure without twist
in the plane containing t and a, which we assume to be a plane of symmetry for the
deformation. We also stipulate that the centre of curvature of the base curve coincide with
the origin of the vector r(s) (Fig. 1).
Then:

and (19) becomes

a(s) = - "r(s) ; ,,= constant,

y(O,~) = [1- "x(O)]r(s) +y(O)b; b = constant

(22)

(23)
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Fig. 1. Geometry of the deformed cross-section. The point with coordinates r, 8 on the undeformed
cross-section is displaced to the point with coordinates x(8), y(8) relative to a base curve with

curvature K.

To obtain the deformation gradient F, we use eqns (20)-(23) to derive:

dy(O,~) = a[l- KX(O))t(s) d~+ [x' (O)a(s) + y'(O)b) dO.

33

(24)

Now d~ = k' dx and dO = r- tHO)' dx, where HO) = i'(O) = k x i(O) is the unit tangent to
a parallel ~ = constant on the reference cylinder. Then comparison with (I) delivers F in
the form (2) directly:

F = a(l- KX)t ® k + [(x'/r)a+ (y' /r)b) ® j,

where r is the radius of the reference cylinder. To satisfy (3b) with N = i(O), we have

L = HO), M = k.

(25)

(26)

Assuming that the centre of curvature of the base curve lies outside the deformed cross­
section (KX < I), it then follows that

and

I = A. - t [(x'/r)a+ (y'/r)b) , m = t.

(27a, b)

(27c,d)

The first of eqns (27) gives the circumferential stretch of the cross-section and the second
is the axial stretch of the longitudinal fibres of the tube. The associated principal vectors I
and m are, respectively, tangential to the contour of the deformed cross-section and normal
to the plane of the cross-section.

The parameter a may be interpreted as the axial stretch of the base curve r(s). Its
specification amounts to an arbitrary choice of the location of the origin of the x-axis
relative to the contour of the deformed cross-section. In particular, ifthe origin lies outside
the contour, then there is no material line whose axial stretch is equal to a.

In the present work we select a to be the axial stretch associated with extension and
expansion ofthe reference cylinder onto another cylinder ofconstant radius p. The deformed
cylinder is defined by:

y(O,~) = pi(O)+zk; z = a~, (28)

apart from a uniform axial translation. This can be written in the form (19), with r = a~k,
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x(e) = p cos e, y(e) = p sin e. (29a, b)

The deformation gradient is easily obtained, and the circumferential and axial stretches
are found to be :

A = pjr and Il = a.. (30a, b)

Formally, these are the same as (27a, b) with Ie = O. However, (28) does not belong to the
class (23) of flexural deformations as the centre of curvature is undefined if the curvature
vanishes.

In the following section, a. is determined from an elementary analysis of the equilibrium
of the deformation (28) in the presence of a prescribed pressure. The analysis of the flexural
response at this same pressure 'can then be based on (23) and attendant kinematical
formulae. In effect, we regard the deformation as a finite flexure superposed on a primary
equilibrium deformation that maps one cylinder onto another.

5. DETERMINATION OF THE PARAMETER ex

Consider a cylindrical tube subjected to a net internal pressure P. We suppose that the
ends of the tube are sealed in some manner to contain the pressure. Let the deformed
surface be one of the family of cylinders described by (28). Then the strain energy is
2nrtW(A, Il), where A and Il are given by (30a, b) and I' is the initial length of the cylinder.
Here W is the relaxed energy defined by (13).

The load potential (6) is the sum ofcontributions from the lateral surface and the ends
of the cylinder. On the lateral surface, the exterior unit normal is n = i(e), and y. n = p.
Then from (7a, b) and (30a, b), X = (lj3)IlA2r, and the contribution to (6) is found to be
P(2nj3)IlA2r2t. We take the ends of the tube to be the cross-sectional planes on which
e= ±tj2. Then n = ±k, yon = Iltj2 and X= (lj3)pJtj2. The ends therefore contribute
2P(lj3)lltj2 times the cross-sectional area. The total load potential is thus found to be
Pn(rA)2Ilt. As expected, the coefficient of P is the volume of a cylinder of length Ill' and
radius p = Ar.

We define the dimensionless strain energy wand the dimensionless pressure p by

w = Wj2G* and p = Prj2G*, (31a, b)

where G* is the material constant in (15). Then the potential energy (5) is proportional to

(32)

The increment de induced by increments in Aand Il is :

(33)

and the deformation is equilibrated if and only if this vanishes for arbitrary dA and dll, Le.

(34a, b)

where Aand Il are given by (30a, b). Thus the equilibrated cylinder is tense.
For Varga materials, the appropriate branch of the relaxed energy is

(35)

This can be used with (34a, b) to derive a pair ofalgebraic equations for Aand Il. Elimination
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of Jl from this pair yields:

and either of eqns (34) then gives:

provided that pA.2 < 2.
Regarding (36) as an equation for p, we find that there is one positive root:

35

(36)

(37)

(38)

This furnishes the equilibrium value of the pressure associated with a particular value
of the radius (Fig. 2).

Inspection of Fig. 2 shows that the equilibrium pressure has a maximum value. Fur­
thermore, there are two equilibrium values of A. associated with each pressure between zero
and the maximum pressure. Alternatively, it may be shown that for p between zero and the
maximum value, (36) has three real roots A.; two of them are greater than unity and the
third is negative. The latter root is therefore irrelevant. For each of the two equilibrium
stretches A., the corresponding stretch Jl is given by (37).

A partial analysis of the stability of the two solutions can be based on (32): If an
equilibrium state defined by (34) is stable, then it is necessary that the matrix of second
derivatives of e(A., Jl) be positive semi-definite at the associated values of A. and Jl, i.e.

(39a, b,c)

Withp fixed, it follows from (32) and (35) that the second ofinequalities (39) is automatically
satisfied. The first and third of (39) can be reduced with the aid of (37) to:

(40a, b)

respectively. For the three values ofp indicated in Fig. 2, we find that these inequalities are
satisfied in the strict sense at points on the ascending branch of the function (38), and
violated at points on the descending branch. The points on the latter branch are therefore
unstable. However, our analysis has been restricted to deformations of the form (28), and
we have not proved that points on the ascending branch correspond to stable configurations.

A comprehensive study of the bifurcation of pressurized cylindrical membranes has

p

0.4

1 2 3 4 5 6 7

Fig. 2. Equilibrium pressure-radius response for a cylinder with sealed ends (Varga strain energy
function).
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been carried out by Haughton and Ogden (1979). They showed that for cylinders with
sealed ends, inflated by a controlled pressure, bifurcation occurs at values of A slightly
greater than the value associated with the maximum pressure. They also proved that
bifurcation occurs at the maximum pressure for cylinders of infinite length. These results
suggest that points on the ascending part of the curve in Fig. 2 are locally stable in the sense
that the second variation of the potential energy is positive definite for arbitrary nonrigid
perturbations of the displacement. Stability is not assured, however, because the absence
of bifurcation, while necessary for local stability, is not sufficient. Nevertheless the second
variation is positive definite in the restricted class of deformations defined by (28), and we
shall describe points on the ascending branch as locally stable in this sense.

More recently, Kyriakides and Chang (1991) demonstrated that for materials whose
equilibrium p - Acurves are qualitatively similar to Fig. 2, the postbifurcation response is
dominated by a localized bulging mode reminiscent ofan aneurism. However, their analysis
presumes a prescription of volume rather than pressure.

In this work we consider three values of the prescribed pressure as indicated in Fig. 2.
For each pressure the associated value of A is obtained from the ascending branch of the
curve and ex is then identified with the value of j,t computed from (37).

We remark that these configurations cannot be absolutely stable for Varga materials
because the energy defined by (32) has no global minimum. For example, in deformations
with j,t = 1 and A> I, the relaxed strain energy is given by (35) and the potential energy:

e = A(l +A- 2 -1PA) +constant (41)

has no finite lower bound for AE(l, (0). This is due to the failure of Varga materials to
satisfy suitable growth conditions for large stretches. But for the stretches furnished by the
locally stable states, the behaviour of Varga materials is in close quantitative agreement
with biaxial data on thin rubber sheets (Varga, 1966).

6. EQUILIBRIUM OF THE BENT TUBE

For deformations involving flexure, the load potential is obtained by combining (6, 7)
with (23). From (3a, 7a, b) and (23, 27) we find that:

rx = (l/3)ex(l- KX)[(X- K-1)y' - yx'], (42)

on the lateral surface of the tube. As in Section 5 we assume that the ends of the tube lie
in the cross-sectional planes e= ± t 12. Position y in these planes is given by (23), where x
and y now range over the cross-sectional area and s = ± ext12. The normals to these planes
are t(extI2) and -t( -rxtI2), respectively, and these are orthogonal to y. Thus the ends
make no contribution to the load potential.

The relaxed energy W(A, j,t) may, by virtue of (27), be regarded as a function of x(O),
x' (0) and y'(O), depending parametrically on r, K and ex: W = w(x; x', y'). Thus the
potential energy per unit initial length of the cylinder is the functional of x and y defined
by:

where

f2n
Elt = Jo F(x,y;x',y') dO,

FIr = W-Px·

(43a)

(43b)

Here we regard P as prescribed. The parameter ex is then uniquely determined from the
analysis of Section 5, and is therefore also prescribed. Then for a particular value of K, the
equilibrium equations for the bent tube are simply the Euler-Lagrange equations furnished
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by (43a):

In view of (27a, b) we have:

37

(44a, b)

and
Wx = -exKWI" Wx' = r-1;'-1(X'/r)wl }

Wy• = r-1;.-1(y'/r)Wl . (45a, b)

From these and (42) it follows after some manipulation that the Euler-Lagrange equations
(44a, b) reduce to:

and
Pex(l-KX)y' = _(;,-1 Wlx'/r)' -rexKWI<}

Pex(l- KX)X' = (A- I Wly'/r)' ,
(46a, b)

respectively. These equations were obtained elsewhere (Steigmann, 1990b), without ref­
erence to variational principles, by specializing the general equations of membrane theory
to deformations of the form (28).

Henceforth we shall base our formulation on the dimensionless curvature

k = Kr/2

and the dimensionless coordinates

u(O) = x(O)/r, v(O) = y(O)/r.

In terms of these variables, eqns (27a, b) become:

and eqns (46a, b) can be written:

pex(l- 2ku)v' = - (A- 1w).u')' - 2exkwI< }

pex(l-2ku)u' = (A-1W1V')',

where wand p are the dimensionless energy and pressure defined in (31 a, b).
The second of eqns (50) can be integrated once to obtain:

(47)

(48a, b)

(49a, b)

(50a,b)

(51)

where a is a constant. Another integral of this system follows from the Euler-Lagrange
equations (44) and the fact that the function Fdoes not depend explicitly on the independent
variable 0. Thus

F- x'Fx' - y'Fy ' = constant. (52)

According to (42), Xis a homogeneous, affine function of x' and y'. Thus the combination
X- x'Xx' - y'Xy ' vanishes identically. Using (45a, b), we then find that (52) can be put into
the form:

W- AWl = b; b = constant. (53)

From the form of the function Jl in (49b), one would expect that for k larger than
some critical value depending on ex, a tension field will develop on that part of the membrane
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/
Fig. 3. Development of wrinkles on the deformed membrane.

for which u ~ ii, where ii is the value of u at which the equality p. = g(A.) = A.- 1/2 is satisfied.
Accordingly, we seek a solution in which the membrane is either fully tense or partly tense
and partly wrinkled. In the latter case, A. > g(p.) and p. > g(A.) in the region defined by u < ii,
while A. > 1 and p. :s:;; g(A.) in the region u ~ ii. For Varga materials, the relevant branches
of the dimensionless relaxed energy are:

u<ii

u ~ ii.
(54)

The procedure for determining the parameters a, band ii is presented in Sections 7
and 8. If it is found that ii exceeds the largest value of u in a particular deformation, then
the membrane is judged to be tense and the first branch of (54) is used. Otherwise the
membrane is partly wrinkled and both branches are operative in their respective domains
of definition. The trajectories of the wrinkles are curves that lie in the cross-sectional planes
~ = constant (Fig. 3).

We have shown elsewhere (Steigmann, 1990a) that in equilibrium deformations the
deformation gradient is continuous at the boundary between a tension field and a tense
part of the membrane, unless the boundary happens to be a tension trajectory. In the present
problem the boundaries are the generators () = ±Uon the reference surface corresponding to
u = ii in the deformed configuration. These are orthogonal to the tension trajectories. Thus
the deformation gradient is continuous. From this result it follows that in the presence of
wrinkling, the left hand sides of (51) and (53) are continuous at u = ii. The latter equations
are therefore valid in both the tense and wrinkled parts of the membrane with the same
values of the pair (a, b).

7. REDUCTION TO QUADRATURES

The integrals (51) and (53) of the equations of equilibrium may be used to reduce the
analysis to quadratures. To proceed we first use (53, 54) to obtain A. = At(u; b) in the tense
part of the membrane, where:

At(u;b) = 2/[p.(u)(b+3-p.(u))], (55a)

and p.(u) is the function defined by (49b). In the wrinkled part of the membrane we obtain
A. = Aw(b), where:

(55b)

Thus A. is constant in the wrinkled region.
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To locate the boundary u = u between the tense and wrinkled regions, we use the
positive root of (55b) to calculate g(Aw) = A; 1/

2
• Setting this equal to J1. at the boundary,

we find from (49) that:

Thus we may write:

_ . = {At(U;b), u ~ u(b)
A-A(u,b)- Aw(b), u>u(b).

(56)

(57)

It follows from the definition ofthe relaxed energy that the continuity condition At (u ; b)
= Aw(b) is automatically satisfied. The procedure used to determine if the deformation is
partly wrinkled or fully tense is given in Section 8. In the latter case A = At throughout the
membrane.

Next we use (57) to define:

H(u;b) E A-'WI.[A(u;b),J1.(u)]. (58)

This is strictly positive on both branches of the energy. Then (51) can be used to
obtain:

where

v'«()) = K(u(O); a, b),

K(u;a, b) E [a+pexu(l-ku)]/H(u;b).

(59a)

(59b)

As indicated previously, we assume the deformation to be symmetric with respect to
the u-axis. Thus it is sufficient to consider the upper half-contour v ~ O. We further suppose
that the points with coordinates (u, v) = (uo, 0) and (un, 0) correspond to the generators
0= 0 and n, respectively, on the reference cylinder (see Fig. 1). Thus:

Uo = u(O) and Un = u(n); uo > Un' (60)

Assuming that u'«()) ~ 0 on the upper half-contour, we find from (49a), (57) and (59a)
that:

u'«()) = - {[A(u;bW-[K(u;a,bW} 1/ 2, (61)

provided that A 2 ~ K 2
• Then for fixed values ofthe parameters a, b, eqns (59a, 61) furnish

a separable equation for the shape of the deformed half-contour:

dv/du = -K(u;a,b)/{[A(u;bW-[K(u;a,b)F} 1/
2

•

From symmetry and continuity it follows that du/dv vanishes at 0 = 0, n. Thus:

[A(u; bW = [K(u; a, bW at u = Uoo Un'

(62)

(63)

Both solution branches of this equation are used to determine Uo and Un in terms of the
parameters a and b. In the next section we introduce selection criteria for Uo and Un'
Exhaustive numerical experiments indicate that the selection criteria always deliver a unique
pair (uo, un) ofadmissible roots. We do not know if this result is merely fortuitous, however.
In this connection we remark that eqns (63) become very complicated if more complex
strain energies are used. Thus our conclusions may not apply in general.

Once Uo and Un have been determined, eqn (62) may be combined with the symmetry

SAS 31: 1-0
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conditions v = °at Uo and u" to obtain:

where

iUO<O,b) K(u; a, b) du
fl (a, b) == u.(a,b) {[A(u; bW - [K(u; a, bW} liZ'

(64a)

(64b)

This places a restriction on the parameters a, b, To obtain a second restriction, we define
O(u) to be the inverse of the function u«(}). Using (61), the requirement O(u,,)-O(uo) = 11:
can then be put into the form :

where

fz(a,b) = 0,

i

Uo(a.b) du

fz(a,b) == u.(a,b) ([A(u; bW-[K(u;a,bW} liZ -11:.

(65a)

(65b)

If wrinkling is present, then the integrals are the sums of integrals over the intervals [u", ii)
and (ii, uo], where ii is given by (56), The procedure for obtaining a and b is based on
numerical integration of (64b) and (65b) (Section 8).

The function 0(0) is determined by integrating (61):

i

Uo(a,b) dt

O(u) = u {[A(t; bW - [K(t; a, bW} liZ' (66)

This is monotone and strictly decreasing on its domain, It therefore furnishes the function
u«(}), () E (0,11:), implicitly. The shape of the deformed half-contour is obtained by integrating
(62) :

V
= iUo(a,b) K(t ; a, b) dt

u ([A(t;bW-[K(t;a,bW}I/Z' UE(U",Uo)'
(67)

These results can be used to find the coordinates (u, v) corresponding to a generator
() = constant.

To establish the existence of the integrals in (64b, 65b-67), we recall that Uo and u" are
roots of the equations A = K and/or A = - K. Because these are polynomials in the variable
u, it follows that for u near u" we have:

(68)

where c is a nonzero constant and e = u- U", A similar result holds for u near uo, with
e = Uo - u. Thus the integrands have integrable singularities at the limits Uo and U", Moreover,
the selection criteria for Uo and u" always deliver successive roots of (63). This implies that
the integrands are finite in the open interval (u", uo)'

8. NUMERICAL SOLUTION

(a) Selection criteria for Uo and U", The integration limits Uo and u" are determined by
solving eqns (63) for fixed values of the data (p, k) and the parameters (a, b). In a tense
part of the membrane, eqns (55a, 58, 59b) and (54) can be used to reduce (63) to a pair of
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a+plXu(l-ku) = ±[I-p(b+3-p)2/4],

41

(69a)

where p(u) is given by (49b). In a wrinkled region we obtain the quadratic equations:

a+plXu(l-ku) = ±(l-A;3/2), (69b)

where Aw is defined in (55b).
Apart from the requirement that the numbers Uo and u" be real, certain additional

restrictions can be stated immediately, namely:

Uo > U", 2kuo ~ I and lX(l-2ku,,) > g[A,(u,,;b)], (70)

where g( 0) is defined by (16). The second inequality is needed to ensure that the minimum
longitudinal stretch p is non-negative. The third must be satisfied if WI' > 0 at u = u". This
in turn follows from our hypothesis about the structure of solutions (Section 6). Ifviolated,
the membrane would be unable to equilibrate the force due to the pressure acting on its
cross-section. Thus u" belongs to the set of roots of (69a). Our hypothesis also implies that
Wl > 0 throughout the membrane. However, there is no a priori reason to suppose that the
stretches defined by (49b) and (57) satisfy this requirement. Thus we impose the additional
restrictions:

wl[A(u; b), p(u)] > 0 at uo, u", (71)

where Wl is computed from (54) and A is obtained from (57).
We find that the selection criteria (70, 71) yield a unique pair of roots Uo and U". We

also find that A 2 > X 2 for UE (u", uo)' Thus the assumptions underlying the development in
Section 7 are verified in the course of solution.

(b) Determination ofthe parameters a, b. To complete our analysis we require solutions
(a, b) of the system (64a, 65a). We find through numerical experimentation that for each
value of the parameter b belonging to a certain interval, there is just one value of the
parameter a that solves (64a). Thus a function a*(o) can be constructed at discrete points
such that a = a* (b) in this interval. Then the problem reduces to finding b such that:

f*(b) =f2(a*(b),b) = 0, (72)

where f2 is defined in (65b).
The procedure requires some estimate of the intervals in which solutions (a, b) are to

be sought. For example, if the curvature k is very small, then we expect to find solutions
very nearly equal to those associated with the purely cylindrical deformations described by
(29). This ofcourse presumes that (29) furnishes solutions ofeqns (51) and (53) with k = O.
To demonstrate this, we use (48) to write (29a, b) as:

u(lJ) = ACOSlJ, v(lJ) = AsinlJ,

where A is given by (30a). Then the left hand side of (51) becomes:

(73a, b)

(74)

which vanishes by virtue of (30b) and (34a). Thus (51) is satisfied with a = O. Since the
stretches are constants in cylindrical deformations, we have W-AWl = const., and (53)
furnishes the appropriate value of the parameter b.

To illustrate the solution procedure, we consider the example p = 0.3 in some detail.
For purely cylindrical deformations, the analysis described in Section 4 furnishes the
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solutions:

(A., Jl) I = (1.26, 1.02) and (A., Jlh = (2.19,1.28). (75a,b)

These correspond to the locally stable and unstable configurations, respectively. Thus
we set IX = JlI = 1.02. The associated value of the parameter h is hI = -0.43. Thus for small
curvatures we expect to find solutions (a, h) near the point (0, -0.43), emanating from the
stable solution (75a). Moreover, in view of (55b) the parameter h must be negative if
the curvature is sufficient to cause partial wrinkling with A. > I in the wrinkled region.
Accordingly, we consider an interval of negative values of h containing hi'

Next we prescribe a small positive value of the curvature k. Assuming this curvature
to be insufficient to induce wrinkling, we then obtain the real roots of (69a) for fixed hand
for values of the parameter a belonging to an interval containing zero. For each value of
a, the value of Uo delivered by the selection criteria is used to check that Uo < u(h), where
uis obtained from (56). If this condition is violated then the membrane is assumed to be
partly wrinkled and Uo is obtained from the set of real roots of (69b), in accordance with
the selection criteria and the additional requirement Uo ~ u(h). This procedure generates
the sets {uO(ai' h), u,,(ai' h)} ; i = 1, ... , n, where n is the number of values ofthe parameter
a considered for a particular value ofh. For each set, the numbers II(ai' h) may be computed
from (64b) by numerical integration. We find one value of a that satisfies (64a) within a
specified tolerance for each fixed h. For k = 0.08 the function a = a*(h) delivered by this
procedure is shown in Fig. 4. The functionF'(h) may then be computed from (65b). This
is also plotted in Fig. 4.

We find two solutions of (72) in the interval considered. The first solution pair (a, h)
is quite close to the solution furnished by the locally stable cylindrical deformation. For
the second solution, the parameter h is nearer to the value h2 = -1.01 obtained by
substituting the unstable cylindrical deformation (75b) into (53). The parameter a is not
close to zero, however. This is to be expected since the value of IX used in (51) is obtained
from the stable cylinder, and the stretches (A.2' IX) do not satisfy (34a). Because IX < Jl2, the
effect is simply to displace the cross-section of the second solution to the left relative to the
origin of the (u, v)-axes. Thus for fixed p, IX and k, the curvature of a generator () = constant
is larger in the first solution than in the second.

To compute the response of the membrane as a function of curvature at fixed pressure,
we prescribe small additional increments in k and repeat the foregoing solution procedure
at each step. We always obtain two solution pairs (a, h), each of which appears to depend

1.0 3

I ,=0.3 I
0.8 bO.OS

2

0.6

~
0.4 e-- •• ...•
0.2

0

0.0

-0.2 ·1
·1.0 ·0.8 -0.6 -0.4 -0.2 0.0

b

Fig. 4. Determination of the parameters (a, b) at (p. k) = (0.3,0.08). The function a*(b) furnishes
the values of the parameter a that yield v = 0 at u = u., u.. The requirement that these points

correspond to 8 = 0 and n, respectively, is expressed by the condition l*(b) = O.
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Fig. 5. Cross-sections of the two equilibrium configurations at p = 0.3 and three values of the
dimensionless curvature, k, of the base curve. The shift of the larger, higher-energy cross-section is
due to the definition of the parameter IX that fixes the location ofthe base curve. In (a) both solutions

are completely tense. The progressive development of wrinkling is shown in (b) and (c).
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continuously on the curvature k. Furthermore, the solutions closely approximate those
furnished by the two cylindrical deformations for small values of k. The first solution
reduces to the locally stable cylinder as k approaches zero, and is always associated with
the smaller absolute value of b. The larger value corresponds to the unstable cylinder. Thus
we expect that there is no curvature for which the second solution is even locally stable.

Further evidence in support of this conjecture is furnished by a comparison of the
potential energies of the two solutions. Using (31), (47) and (48), the potential energy (43a)
may be shown to be proportional to :

f."0 du
e = {w[A(u;b),jl(u)]-plXu(l-ku)K(u;a,b)} ,

". JA 2 -K2
(76)

(see Appendix A). For equal values of k, we find that the first solution always has the
smaller energy, despite the larger curvatures of the generators. However, it may be more
meaningful to compare energies at equal values of the curvatures of the centroidal axes, for
example. In particular, it may be difficult or impossible to control the curvature of the base
curve in practice. Thus we regard the comparison as merely indicative.

Equation (67) was used to generate the shapes of the deformed cross-sections cor­
responding to P = 0.3 and k = 0.05, 0.08 and 0.25. These are shown in Figs 5(a), 5(b)
and 5(c), respectively, where the energies of the two solutions are also indicated.

For k = 0.08, the stress distributions W;. and wI' furnished by the low-energy solution
are shown in Fig. 6 as functions of the coordinate u. The first stress is the hoop tension
transmitted across the generators ofthe tube. The second is the tension along the generators.
It vanishes identically in a wrinkled region. We find that once wrinkling has initiated at
u = uo, it continues to cover an increasing portion of the membrane as k increases. The
internal pressure prevents complete wrinkling, however.

I p=O.3 Ik=O.08

0.4

0.38

0.32

u" -1 -0.5 0.5 Ii 1 u" U

Fig. 6. Distributions of hoop tension w. and axial tension wp furnished by the low-energy solution
at (P, k) = (0.3, 0.08). The membrane is tense in the interval [II", Ii) and wrinkled in the interval

(Ii, uo].
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Ip=03 Ik=O.08

1.1

1

u,. -1 -0.5 0.5 a 1 u" U

0.8

u,. -1 -0.5 0.5 a 1 u" U

Fig. 7. Distributions of hoop stretch Aand axial stretch JI. furnished by the low-energy solution at
(P, k) = (0.3,0.08). The hoop stretch is constant in the interval (u, uol corresponding to the wrinkled

region.

Finally, we remark that the stretches A. and jJ. associated with the low-energy solution
fall within the range in which the Varga material is known to provide good quantitative
agreement with uniaxial and biaxial data on rubber (Varga, 1966). The stretch distributions
corresponding to k = 0.08 are shown in Fig. 7. The second solution furnishes principal
stretches that are well outside this range, however.

9. FORCE AND MOMENT FORMULAE

In this final section we use solutions (a, b, uo, un) of the foregoing equilibrium problem
to compute the resultant force and moment due to the stress distributed over a cross-section
e= constant.

(a) Resultant force. The stress-resultant T in the membrane is given by (4), with the
relaxed energy W substituted in place of W*. Then from (26) and (27c, d), the force per
unit initial arc length acting on a cross-section is Tk = Wilt, and the resultant force is Fl,
where:

(2n
F= r Jo WlldO.

For equilibrium deformations, eqn (46a) leads to F = PA*, where:

A* = fXdY = r
2 fUdV'

(77)

(78)

and the integrals are evaluated on the contour of the deformed cross-section. It follows
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from Green's theorem that A* is simply the cross-sectional area of the deformed membrane.
Then, as expected, F is the resultant force due to the pressure acting on the cross-section.
To compute it we use eqn (A.6) of Appendix A to obtain:

(79)

(b) Resultant bending moment about the centroid. Perhaps the most descriptive measure
of the overall flexural response of the tube is the resultant moment associated with a given
curvature at equilibrium. Because of the force F, the value of the moment will, of course,
depend on the origin used for its measurement. A convenient choice is the origin of the
(u, v)-axes. This corresponds to the base curve whose curvature k is prescribed. However,
the selection of the base curve itself is only a matter of convenience, having no intrinsic
significance insofar as the deformation of the membrane is concerned. Our particular choice
was motivated by the need for a priori estimates of the parameters a and bin eqns (51, 53),
for states differing only slightly from purely cylindrical deformations.

Instead, we compute the moment relative to the centroid ofthe deformed cross-section.
This furnishes a description of the response that is intrinsic to the problem, Le. independent
of the choice of base curve. Because the resultant force is known, the moment relative to
any other axis may then be determined.

The position yc of a point on the centroidal axis is defined"y :

(80)

where y is given by (23) and the integral extends over the deformed cross-section. Then the
moment relative to the centroid is:

M c = Mo-PA*yc x t,

where

r2n

M o = r Jo W/lyxtdO,

is the moment about the centre of curvature.
According to (22) and (23),

(81a)

(8Ib)

(82)

where Xc is the x-coordinate of the centroid relative to the base curve. The y-coordinate
vanishes due to the symmetry of the deformation. It follows as a consequence of Green's
theorem and (48) that

(83)

Then from (A.6) of Appendix A we obtain:

(84)

The curvature of the centroidal axis is Kc = IYcl- I = (K- I - xc) - I. We define the dimen-
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sionless curvature as in (47):

(85a)

Then

(85b)

In Appendix B we use the equilibrium equations and the symmetry of the deformation
to demonstrate that Me = Meb, where b is the normal to the plane of flexure and

(86a)

Here

(86b)

is the dimensionless moment, where

(86c)

and H is the function of u defined in (58).
Equations (85b, 86b, c) were used to compute ke and me as functions of k for the

dimensionless pressures p = 0.1, 0.2 and 0.3. The calculated curves of me vs ke are displayed
in Fig. 8 for the solutions with the smaller potential energies. These results illustrate the
stiffening effect of pressure on the flexural response. The low-energy solutions shown in
Figures 5(a, b, c) correspond to ke = 0.049, 0.078 and 0.286, respectively.

Certain qualitative features of the response are shared by solutions of shell theories
that incorporate the effects of the bending stiffness of the material. The most striking of
these is the occurrence of a maximum moment, preceded and followed by monotone
behaviour (see Reissner and Weinitschke, 1963). The arrows indicate the onset of partial

1.2-r------------------,

u

e

0.80.60."0.2
O.O .....-.....--"'T""-....,..--.--......-"""T"---...--1

0.0

k c

Fig. 8. Bending moment about the centroid as a function of the curvature of the centroidal axis at
three values of the inflation pressure. Arrows indicate incipient wrinkling at " = "0'
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wrinkling, which is seen to occur before the maximum is attained. This is the condition
corresponding to incipient wrinkling at U = UO' Thereafter, wrinkling develops progressively
with increasing curvature.

The moment--eurvature response is analogous to the pressure-radius response of Fig.
2, which is known to be associated with localized radial bulging following bifurcation from
a purely cylindrical deformation at or near the maximum pressure (Kyriakides and Chang,
1991). Thus we conjecture that, for a given pressure, our solution becomes unstable in any
experimentally feasible loading program at some value of the curvature near the value
corresponding to the maximum moment. The analogy with bulging suggests that the
instability is characterized by a localization of curvature and an attendant variation of the
cross-sectional shape along the axis of the tube. This supposition is supported by exper­
imental data on the flexure of actual tubes (Emmerling, 1984). Such deformations do not
belong to the class (19), however. Thus the present theory cannot be used to describe them.

The localized bending observed in thin-walled polyethylene tubes led Lukasiewicz and
Glockner (1985) and Lukasiewicz and Balas (1990) to formulate an approximatepneumatic­
hinge model of the collapse of pressurized cylinders. Our analysis would seem to provide
further impetus for such theories. In contrast, the Stein-Hedgepeth theory for small bending
deflections of partly wrinkled membranes predicts a stable moment--eurvature relation that
asymptotically approaches a finite upper bound (Stein and Hedgepeth, 1961). Koga (1972)
developed a similar theory for small bending deformations superposed on a finite cylindrical
deformation of a pressurized membrane. The latter theory accounts for the stiffening effect
of pressure but exhibits a flexural response that is otherwise similar to that predicted by the
Stein-Hedgepeth theory.
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APPENDIX A

According to (42,43), the total energy is given by:

f2
•

Ejr! = Jo WdO-I,

where

Prx f2.
I=Ji Jo (I-Kx)[(x-K-1)y'-yx'jdO.

From (61) and the symmetry of the deformation with respect to the u-axis, it follows that:

dO = +-dujjA2 -K2

on the upper and lower half-contours, respectively. Then the first term in (A. I) may be written:

(A.I)

(A.2)

(A.3)

(A.4)f2. WdO = 4G*f."· wdu ,
Jo ", jA2_~

where w is the dimensionless strain energy.
The integrand in (A.2) may be reduced to 3x(l- !KX)y', modulo an exact differential. Thus, in terms of the

dimensionless coordinates u, v and the dimensionless curvature k, (A.2) becomes:

1= Prxr f u(l-ku)dv.

From (62) and the symmetry of the deformation, we have:

dv = +- Kduj jA2 _K2

on the upper and lower half-contours. Then:

(A.5)

(A.6)

(A.7)
f.

". Kdu
1= 4G*prx u(l-ku) ,

", jA2 _K2

where p is the dimensionless pressure. On combining (A.4) and (A.7) with (A.l), we obtain Ej4G*r! = e, where
e is given byeqn (76).

APPENDIXB

On combining (81, 82) and (22, 23), we obtain:

Me = M.+PA*(Xe-K-1)b,

where

For equilibrium deformations it follows from (46a) that:

(B.I)

(B.2)

(B.3)
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Integrating the right hand side by parts, we find:

(B.4)

where u, v are the dimensionless coordinates and w is the dimensionless strain energy. According to Green's
theorem, the first term on the right is proportional to the y-coordinate of the centroid of the deformed cross­
section. This vanishes by symmetry. Furthermore, it follows from (51) that the integrand in the second term is
expressible as an exact differential. Thus the coefficient of a in (B.2) vanishes and Mo = Mob, where:

(B.5)

Then (B.l) reduces to M, = M,b, where:

(B.6)

Finally, we use (46a) in the second term to eventually obtain:

where A* and x, are defined by (78) and (83), respectively.
From (61) and (A.3) of Appendix A we have:

(u')2dll = +JA2-K2du

on the upper and lower half-eontours. Then:

where 13 is defined in (86c). Next we use (79) and (84) to write:

PA*(K-'-X,) = 2G*r2p(k-'/, -/2),

(B.7)

(B.8)

(B.9)

(B.lO)

where p is the dimensionless pressure. Substitution of (B.9) and (B. 10) into (B.7) then yields M, = 2G*r2m" where
m, is given by (86b).

Equations (8la, b) are well-defined for the cylindrical deformations described by (28). With t = k, y, = zk
and the equilibrium equation (34b), we obtain:

r2n

M,=rW" Jo yxkdll. (B.ll)

This vanishes by virtue of (28) and (29). Equations (77), (30a) and (34b) may also be used to obtain F = PA*,
where A* = np2.


